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HYDRAULIC DRAG IN TURBULENT COOLANT FLOW IN A POROUS CABLE 

V. A. Babenko UDC 532.517.4+536.48 

The hydrodynamics and heat transfer in the cooling of ah electrical cable by radi- 
cal coolant filtration are studied. 

The constructional scheme of the cable is shown in Fig. i. There are two coolant chan- 
nels, of circular and annular cross section. Attachments that completely or partially cover 
the channel force the coolant to filter in the radial direction through the permeable struc- 
ture formed by the current-carrying strands, the porous insulation, and the supporting base. 

The model of a porous body with equivalent permeability, heat conduction, and heat liber- 
ation is used for mathematical modeling of the hydrodynamic and thermal processes in the per- 
meable structure. The current-conducting part is cooled on.account of heat transfer at the 
surfaces and intrapore heat transfer. 

The hydrodynamics in the heat exchanger is modeled using channel-averaged equations of 
mass and momentum balance. 

The momentum-balance equation is written for the tube 

d -*77,** * * * (i) (~TP~ u~ S, + PTST)---~a*2~a* 
dx* 

a n d  f o r  t h e  a n n u l a r  c h a n n e l  

d - , - , ~  * * * b* ( ~ u ~  s c + PcS~) = - - ~  2~b*--~c'2~c *. (2) 
dx* 
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F i g .  1. Po rous  c a b l e :  1) s h e a t h ;  2) c u r r e n t  
conductors; 3) porous electrical insulation; 
4) s u p p o r t i n g  b a s e ;  5) b l o c k i n g  a t t a c h m e n t s .  

law 
The rate of transfer through the porous cylindrical wall is determined according to Darcy's 

a,pa,va, = b,pb, vO, = _ K* ( p .  __ p~). 
~* In b/a 

(3) 

The mass-balance equations in the channels take the form 

d (p* z•S*) == - -  pa*v~*2z~a*, 
dx* (4)  

d (5) 
dx* (Pc* u * S2I =: p~ C ff 

Next ,  Eqs.  ( 1 ) - ( 5 )  a r e  b r o u g h t  t o  d i m e n s i o n l e s s  fo rm,  r e f e r r i n g  t h e  l i n e a r  d i m e n s i o n s  t o  
t h e  l e n g t h  s c a l e  L* = ((ST* = SC*) /2~)  112, t h e  c h a n n e l  c r o s s  s e c t i o n  t o  t h e  t o t a l  c r o s s  s e c -  
t i o n  $7" = ST* + SC*, the density to P0*, t_he velocity to u0* = G*/SE*p0*, and the tangential 
stress and pressure to p0*u0 .2. Let ~i = PiuiSi,i=T,C denote the proportion of the mass flow 
rate and j = oavaa the dimensionless transverse mass flow rate. 

The pressure is now eliminated from Eqs. (1)-(5). Differentiating Eq. (3) with respect 
to x*, assuming constant properties, and neglecting the derivatives of the momentum-flow coef- 
ficients, an equation for j is obtained 

(, -- -- ) au~' bus 2 cu~ 2 (6) 1 d] _2 ~4u~.-6 ~ur ] - - - - §  
KN dx Sr S.r S~ S c S C 

To calculate the coefficients characteristing the flow structure, the presence of local 
self-similarity of the flow in regions adjacent to the walls a, b, c is assumed, in the form 
u + = f(y+, Vw +) in hydrodynamic similarity variables. 

The dynamic shear velocities u~ = and uTb are determined from the integral mass-balance 
equations in the channels 

a+ 

Co~ := S u+r+dr+/(u$ N2)' (7) 
0 

f+ c+ 

.co c :: % -6 o) e = ~ u+r+dr+/(u~N 2) + ~ u+r+dr+l(u~N2). (8)  
b+ f+ 

The r e l a t i o n  f o r  u~ c i s  o b t a i n e d  f rom t h e  momentum-balance  e q u a t i o n  in  t h e  r e g i o n  c ( f  =< r < 
c ) :  

; 0 (ur) d r =  d P r  0 (ur) d r - - u y  (9)  
2u W -~x dx 

f f 

The left-hand side of Eq. (9) is expressed in terms of the hydrodynamic similarity variables 
and transformed by integration by parts 

c 

i dr= 
~" 0 (ur) dr - -  u I 2. W 
f f 

(io) 
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f ~ ] o (u+ (c+ - y+)) rig+ - (u+ @+ = 2u+ 

0 c+-f+ 

__du~ c l [  ~ 2  2u+' 0 (u+(c+__y+))9+dy+__ 
dx u~ N Oy + 

0 

c+--f+ c+--i + 

0 0 

L 
-- u; .1 OY + (u+ (c+ -- b,+)) 9+dy+ + 2c + 

0 

du~ 11~ 
dx ul 

Here 

r c+-f + ] 1 
11 c== N 2 c+ u+'dy+--u~ S u+b~-dg+ o 

r o 

E l i m i n a t i n g  the  p r e s s u r e  g r a d i e n t  from Eqs. (2) and (9 ) ,  a d i f f e r e n t i a l  equa t ion  f o r  
u~ c i s  ob ta ined  

du~ cuC*S , c.-I -d"x-- -- (2~UcSe] -k bub~'S~ ~ b)U,',~ S-~'. (11)  

The position of the maximum-velocity radius r = f in the annular channel is determined 
from the junction of the velocity profiles from walls b and c at this point 

u+b~ ub~ ~ u~ u~. ( 12 ) 

The momentum-balance equation in the tube is transformed using the mass-conservation 
equation in Eq. (4) 

--LT 1--  (13)  dx S, ST 

Equat ions  (13) and (3) s e rve  f o r  t he  c a l c u l a t i o n  of t he  p r e s s u r e  f i e l d  in t he  h e a t  exchanger .  
The g e n e r a l  c a l c u l a t i o n  scheme invo lves  so lv ing  a system of o r d i n a r y  d i f f e r e n t i a l  equa t ions  - 
Eqs. (4 ) ,  ( 6 ) ,  (10) ,  and (13) - and a l g e b r a i c  equa t ions  - Eqs. (7 ) ,  (8 ) ,  and (12) .  The i n t e -  
g r a l s  in Eqs. (7 ) ,  (8 ) ,  and (10) may be c a l c u l a t e d  accord ing  to  an a n a l y t i c a l  formula  from 
the specific form of the self-similar velocity profile in the wall region (wall law). 

The following wall law is specified 

exp (v+ y+) -- 1 
U +~- O~ when 9+ < 91+a, (14) 

Z-~- Vw+ Z2 
4 when 9+ > Y 7~ , 

la 

where yla + is the thickness of the dynamic sublayer; X = 0.4 is the Karman constant; z = 1/x 
in y+ + B +. The constant B + depends on the injection-suction rate and is 5.5 when Vw + 0. 
The expressions used to calculate Yla+(Vw +) and B+(vw +) are [i] 

~ [ e x p  (v+ yl +) = (15) u (11,635) ~-, 

B+= 2 ( ( v+u+ ) ) 1 (16) 
v~ exp ~ t a  --I -- lnYl+a . 

, 2 X 

Equation (15), which is transcendental with respect to Yla +, serves as the hypothesis 
for determined determining Yla +, while Eq. (16) for B + is written on the basis of continuous 
splicing of the velocity profiles in the laminar sublayer and the turbulent layer when y+ = 

Yla +. 

Substituting the wall law in Eq. (14) into Eqs. (7), (8), and (12) in each of the regions 
of integration a , b, and c gives Eq. (7), which is transcendental with respect to u~ a, and the 
system of Eqs. (8) and (12), which are transcendental with respect to u~ b and f. The algorithm 
for their solution is now described. 
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Approximations for u~ a, uTb, and f are specified on the basis of the previous history 
of the flow. Equation (15)for Y+ila,i=a,b is solved iteratively by the Newton's method; this 
requires two or three iterations. Calculating the integrals in Eqs. (7) and (8) according 
to the velocity profile in Eq. (14), the expression obtained for ~i,i=a,b,c is 

o~ = u~ [J~(yla,rw, R ~ ) - - J s  (0, r~, Rw)] + u~ [J~ (ye, zff, rw)--  
(17) p 

+ Rw)], 

where r w == (a, b, C)a,b,c ; Rw = (--  R, R, O)a,b,c ; 

i" 
Jl(Y, z, rw)= [y(r~-Y-y/2) 

J2(Y, z, r~, R ~ ) =  Rw [ y ( r ~ y / 2 )  z ~  
4Nrw L 

Rw) = N [ - -  yr~ (rw ~ y/2) J8 (y, rw, 
Rw + [ 

z - -  Y ( rw~y /4 ) ]  ; 
% 

Y (r~ ~_ y18) 2 ] ; Yz (r~ ~ y14) 2z + z-- V 

r~ exp (RwY I (rwTy+_ r-~-w) ], 
Rw \'-'~'-'~m-'m I 

and the superscript p denotes the value from the preceding iteration. 

The dynamic shear velocities uxa, uTb are found from Eq. (17), which is quadratic in u~ i, 
i = a, b; iteration is necessary here (usually no more than three or four iterations), since 
u~ appears in the coodinate z. The quadratic Eq. (17) has one positive root. The other root 
is negative and of no significance here. In region c, knowing u~ c, the dependent variable 
of Eq. (ii), Eq. (17) permit@ the determination of ~c and ~b = ~C - ~c. 

The position of the velocity maximum in the annular channel r = f separating the channel 
from zones b and c is determined iteratively from Eq. (12) by Newton's method at fixed uTb. 

After obtaining the new values u~a, ux b, f, the whole cycle of calculations, consisting 
in the successive determination of Y+ila,i=a,b,c, uTa , u b, ~c' ~b, and f is repeated so as 
to monitor the accuracy. Despite the presence of several iterative procedures, this algorithm 
is more convenient for calculations and more reliable than the use of standard numerical pro- 
cedures for solving systems of algebraic transcendental equations. The calculations are made 
according to explicit formulas. 

It is simple to obtain explicit formulas also for calculating the momentum-flux coef- 
ficients 8T and ~C; however, in the given case it is simpler to perform numerical integration 
after determining all the characteristics of the velocity profile. 

The integrals appearing in II c need only be calculated in region c, for which Vw + = 0, 
while the first line in Eq. (14) is replaced by u + = y+ and the second by u + = z. Integra- 
tion gives 

I i~=c~u c" ( c - - f )  2___.__~2 z e + z ~  -- c+ k %2 

ZE 

i r  ~ �9 

Y =I 

2~ ~ ( 18 ) 

The theoretical model is tested by comparison with well-known data from flow in a tube 
and an annular gap in conditions where leakage through the wall does, and does not, occur. 
The theoretical dependences CFT = f(Re T) and CFC = f(Rec) coincide within limits of 2% with 
the well-known Filonenko-Blasius dependence [2] for a tube and with the analogous dependence 
for an annular channel [3]. The position of the maximum-velocity radius in the annular chan- 
nel with and without injection is in good agreement with the data of [3, 4]. 

The following coolant parameter values are taken in the calculations: v* = 0.173-10-6; 
0 ~ = 9.175; C * = 5200; X* = 0.02. The geometric dimensions corresponding to Figs. 1-5 are: 
a* 5.10 -3 m~ b* = 10.10 -3 m, c * = 12.10 -3 m, x* L = 0.4 m. 
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Flows with suction from the tube may occur with both reduction and increase in pressure 
(Fig. 2). With total suction from the channel, the dimensionless pressure difference is close 
to unity, which is in agreement with the experiments generalized in [5]. There is agreement 
between the theoretical pressure difference and the analytical dependence from [5] modified 
to take account of the possible variability of the suction rate over the length 

2(P,.~P~n) 1,3 [1__ ( ~ 1~ 1 007 ~ O~n r _ (~ /o  

in which 80T is the hydraulic drag calculated according to the Blasius formula: 80T = 0.316- 
ReT -~ and Am T = mTin - ~TL. 

The calculation of the pressure difference over the tube in injection is compared in Fig. 
2 with the dependence [6] 

( 2 ( P ~ - - P c ) _ 2 , 1 4  1--\..-~1 i ,  (20)  

9T UTin 

which i s  o b t a i n e d  on n e g l e c t i n g  t h e  v i s c o u s  f r i c t i o n  in  t h e  momentum-balance  e q u a t i o n  and i s  
i n a c c u r a t e  f o r  s m a l l  i n j e c t i o n  r a t e s ;  w i t h  i n c r e a s e  in  i n j e c t i o n  r a t e ,  t h e  a g r e e m e n t  be tween  
Eq. (20)  and c a l c u l a t i o n  i m p r o v e s .  The c a l c u l a t i o n  o f  t h e  p r e s s u r e  d i f f e r e n c e  o v e r  t h e  l e n g t h  
o f  t h e  a n n u l a r  c h a n n e l  i s  compared w i t h  a n a l y t i c a l  d e p e n d e n c e s  f o r  t h e  c a s e  o f  s u c t i o n  t h r o u g h  
the internal wall 

' - - 2  \ (Oci  ~ ! �9 �9 f~U Ci n 

and for the case of injection 

p--CU-2Cin \ c~ / Dc 

XL OCin O0c (1 ~ /3 / 
D c Ao c 3 OCin / / (21) 

~in 00s 1 
Aoc 3 ( l + b / c )  

• l - -  ( r ~3/ (22)  
 cid / 

in Fig. 3. Equation (21) is a modification of the formula used in [5] to approximate the ex- 
perimental data on flow in a tube with unidirectional suction through a series of holes along 
its generatrix. The approximate Eq. (22) is obtained, like Eq. (20), by neglecting viscous 
friction at the permeable wall in the momentum-balance equation. 

The dependences of the longitudinal pressure gradient on the intensity of the overflow 
in the circular and annular channels (Fig. 4) are similar if the measure of the overflow in- 
tensity adopted is JT = -wa/uT, JC = bvb/(c + b)uc" At small injection (0 < J < 0.01) linear 
relations give more accurate agreement with the calculation 

0~ = 4CFT0 + 13,3J~, 

0C= 4Cr'eo -I- 12,4Jc. 

Linear analysis of the dimensionless frictional factors in flow with injection through 
the permeable channel walls leads to the following laws 

Cr T = CFT0 --- 0,84JT, 

CF c = Crc0 - -  0,97Jc, 

u b 
Crb = CFb0-- 1,12 = 

uC 

L i n e a r  a p p r o x i m a t i o n  o f  t h e  f r i c t i o n a l  f a c t o r  w i t h  s u c t i o n  i s  l e s s  a c c u r a t e  t h a n  t h e  
q u a d r a t i c  a p p r o x i m a t i o n  f o l l o w i n g  f rom l i m i t i n g  t h e o r y  [ 7 ] .  N e v e r t h e l e s s ,  l i n e a r  ap p rox ima-  
t i o n  may p r o v e  u s e f u l  in  v i ew o f  i t s  s i m p l i c i t y ,  f o r  example ,  in  s o l v i n g  s o - c a l l e d  i n v e r s e  
c o l l e c t o r  p r o b l e m s :  c a l c u l a t i n g  t h e  v a r i a t i o n  in  c h a n n e l  c r o s s  s e c t i o n  o v e r  t h e  l e n g t h  n e c e s -  
s a r y  f o r  t h e  f o r m a t i o n  o f  t h e  r e q u i r e d  s u c t i o n - r a t e  law.  The a p r o x i m a t i o n  o f  t h e  f r i c t i o n a l  
f a c t o r  f o r  t h e  c a s e  o f  s u c t i o n  f rom t h e  t u b e  t a k e s  t h e  form 

Cp~ == CPTo -- 1,55JT. 

The mean p r e s s u r e  o v e r  t h e  vo lume f l o w  r a t e  

Pz =: -=--c~ P-PT. + ~C_, pxPc ( 23 ) 
PT PC 

1020 



-'(P;-P-~ zn) Ie0 

o ~ ~  /~-. 
, 

Z ' 

. ,  I - -  | I I 

2(P*C -P* ) Cin 
p*D ,z 

Cin 
0 

- f  

-Z 

-O 

-I00 

Fig. 2 Fig. 3 

Fig. 2. Pressure difference over the length of the permeable tube when 
G'Tin = 0.2"10-3 kg/sec, K* = 10 -13 m 2. The continuous curves correspond 
to calculation and the dashed curves to Eqs. (19) and (20). The figures 
on the curves give values of Re r. 

Fig. 3. Pressure difference over the length of the annular channel with 
an internal permeable wall when G*cin = 0.8"10-3 kg/sec, K* = i0 -I~ m 2. 
The continuous curves correspond to calculation and the dashed curves to 
Eqs. (21) and (22). The figures on the curve give values of Rer; the 
cross corresponds to total suction from the channel. 

is now introduced; the difference in this pressure characterizes the work done by the pressure 
forces per unit time in moving the coolant through the heat exchanger as a whole. The incre- 
ment in this pressure consists of the increments required for injection along the channels 
and transverse to the permeable wall. Considering the isothermal case, and using the mass- 
balance Eqs. (4) and (5), the result obtained for the derivative (PT)x' is 

dP~ dPT -5 m?~x q ] (PT--Pc~. ( 24 ) 
dx -~x 

The first two terms in Eq. (24) characterize the work for injection of the coolant along 
the channels and the third characterizes the work for injection through the porous wall. The 
expression for the derivative (PY)x' may be written in a different form, using the total momen- 
tum-balance equation for both channels 

dx p~ 

w h e r e  ~7. i s  t h e  t o t a l  m o m e n t u m - f l u x  c o e f f i c i e n t  o v e r  b o t h  c h a n n e l s  

I T+ Sop c t c, 
and ~E = ra'a + ~bb + ~Cc, ~ = STPT + ScPc" 

Note that 

Pz ~ ('c%~ 9z "ST)(PT--Pc)=  (Sc--  a~C Pz')(PT--Pc) - 
_ = \ -= -  (26) 

Ph / 

In the case of constant density (PT = PC = PE = I), using Eq. (26) and neglecting terms 
that contain derivatives of the momentum-flux coefficients ~T and ~C, it is found that 

dP= = ~x-t-' d~x, d ( P z - - N  = ~ z + /  ~c --~* m" -5 -5 ,,, - - .  (27) 
dx dx dx - ~  KN dx 

The difference in the mean pressure head P and the mean (over the volume flow rate) pres- 
sure PE over the length of the porous section of cable is shown in Fig. 5. With_ increase in 
the overflow Reynolds number Re r, the discrepancy between the differences (P - Pin) and (Pz - 
PEin ) increases; when Re r = 150, the energy required for injection is approximately an order 
of magnitude greater than the analogous value for Re r = 0. In the case where there is no 
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Fig. 4. Dependence of the hydraulic drag 8~ ~=m ~ on the intensity of 
the overflow Ji,i=T C: i, 2) in the tube, Re'~ I~5.104 and 1.5.10 s, re- 
spectively; 3) in t~e annular channel, Re = 1.5-i04; 4) 8 = 17.5 J. 

Fig. 5. Variation in mean pressure head P (dashed curves) and mean 
(over the flow rate) pressure PZ (continuous curves) over the length 
when G* = 0.1"10 -2 kg/sec; K* = 10 -13 m2; ~Tin = 0.2; ~Cin = 0.8. The 
figures on the curves are values of Re r. 

overflow, the differences in P and PZ are close, but not equal, in magnitude. The pressure 
P is introduced from the total momentum-balance equation for the two channels n and PZ from 
the kinetic-energy equation. These pressures are not identical even in the case of no over- 
flow. 

Analysis on the basis of the results obtained for individual terms in the total momentum- 
balance Eq. (25) shows that, in the given range of Re r, the viscous and inertial terms in Eq. 
(25) are of the same order of magnitude; the variation in hydraulic drag is caused both by 
the change in viscous friction and by the change in the derivative of the momentum-flux coef- 
ficient. 

NOTATION 

x*, longitudinal coordinate; r*, radial coordinate; y*, radial coordinate measured from 
the wall; u*, v*, longitudinal and radial components of the velocity vector; Vw*, injection 
rate at the wall, p~sitive in injection; P*, pressure; ~*, kinematic viscosity; p*, density; 
p* = (~T/~*T + ~ /p*c )-I, mean density over the flow rate; B = u2/u2, momentum-flux coef- 
ficient; u~* = , dynamic shear velocity; ~*, tangential friction at the wall; D*, chan- 
nel diameter; K*, permeability of wall,_K = K*/L .2 In(b/a); G* total mass flow rate; N = 
~*~L*/~*, R = va*a*/~, Re r = 2R, Re = u*D*/v*, Reynolds number; CFT = 2~a/~T-UT 2, CFb = 2~b/ 
PCuC 2, CFC = 2~C/Pcuc 2, CFC (bCF b + cCFC)/(b + c), friction numbers; 0 = (2/pu2)(dP/d(x/D)), 
local hydraulic drag; (fl, f2, f3)a h c denotes fl, f2, f3, respectively, in the regions a, 
b, c; y+ = y~u~*/~ ~, u + = U'~/UT ~, Vw ~ = Vw*/U~*, hydrodynamic similarity variables. Indices: 
*, dimensional quantity; T, in tube; C, in annular channel; a, b, c, in the regions 0 ~ r* 
a,, b* ~ r* ~ f*, and f* S r* ~ c*, respectively; superscript a, b, c, at the walls r* = a,, 
r* = b*, and r* = c*, respectively; la, at the boundary of the laminar sublayer; E is the 
maximum-velocity pointl f, at r* = f*; in, in the initial cross section; L, at the end of 
the calculated section; 0, standard value; a bar above a quantity denotes averaging over the 
region. 

i. 

. 

3. 
4. 
5. 
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NONLINEAR MODEL OF THE INTERACTION OF CRYOAGENT FLOWS 

IN HEAT EXCHANGERS 

I. K. Butkevich, M. A. Zuev, 
and V. F. Romanishin 

UDC 621.594-71.045 

A nonlinear analytical model of a two-flow heat exchanger is developed, ensuring 
high accuracy and speed, and universal indexing of the initial temperatures and 
eliminating degeneration of the heat transfer. 

In investigating the cooling and heatingh of cryogenic systems, and in describing various 
transient conditions of quasistatic type, there arises the problem of correctly determining 
the functional relations between the limiting temperature of a two-flow heat exchanger. 

Traditional methods of solving steady-heat-transfer problems reduce, as a rule, to two 
schemes. According to the first, the initial heat-transfer equations are integrated under 
the assumption of constant properties and parameters of the heat-carrier interaction. The 
limiting temperatures obtained here allow the mean values of the corresponding "constants" 
to be refined, after which the desired temperature values are redefined, and so on (linear- 
averaged model) [i, 2]. In practice, this scheme is a multistep iterative process. 

The second calculation scheme reduces to direct integration of the heat-transfer equa- 
tions on a computer, automatically taking account of the change in the coefficients at each 
step. The initial temperatures are specified here at one end of the heat exchanger. 

Recently, combined calculation schemes have also appeared [3]; in these schemes, some 
of the deficiencies of linear models are eliminated in a narrow parameter range close to 
nominal conditions, as calculated by numerical integration. 

Analysis of these methods leads to the conclusion that calculation by the first is faster 
than calculation by the second and is more flexible from the viewpoint of the possibility of 
determining an arbitrary pair of limiting temperatures. This is often decisive in the choice 
of an algorithm for investigating systems with parallel and series combinations of heat ex- 
changers. However, the artificial linearization of the distributed parameters in the first 
method may lead to fundamentally incorrect solutions. This is associated with the possible 
disregard of those regions of the heat exchanger where nonlinearity of the thermophysical 
properties of the flows may lead to intersection of the temperature profiles, which would 
mean that the intermediate temperature differences vanish. In reality (if the influence 
of hydrayulic losses, external heat sources, and heat conduction is neglected), such degener- 
acy cannot occur. This physically impermissible phenomenon may be eliminated by developing 
a nonlinear model of heat transfer. In addition, it must be emphasized that the nonlinear 
terms of the equations describing processes in heat exchangers for the low-temperature region 
(T - 20-4.5 K) amount to tens of percent with respect to the linear terms, which also points 
to a need to develop a nonlinear theory of heat transfer. 

Consider an initial system of steady equations of a two-flow heat exchanger, omitting 
the terms due to hydraulic losses, external heat sources, and heat conduction. The calculation 
of each of these factors falls outside the scope of the present work and may be accomplished 
by classical methods. The influence of these factors on the heat transfer is assumed to 
be small, and is easily taken into account by perturbation theory [i, 2] for the solution 
given below, which is expediently interpreted as the nonlinear zero approximation. Thus, 
fixing the flow rates and mean pressure in each flow for steady conditions, it is found that 
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